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Abstract

This paper examines the value of climate change mitigation strategies such as nature conservation
in municipal bond markets. Using extreme weather and natural capital loss shocks, I find that the
market starts to price the value of natural capital after an extreme weather event. In fact, natural
capital protection could decrease the county’s cost of debt by between $3.2 and $6 million over
the life of an average bond. Bonds tied to specific infrastructure projects are more affected than
general-purpose bonds. The effects of mitigation strategies impact the county with the natural
capital and its neighbors. More broadly, I find that natural capital loss is related to population
migration and a decrease in personal income, with counties dependent on farming suffering the
most. Overall, this paper shows that financial markets price the value of mitigation and highlights
the critical role of nature as a shield from natural disasters.
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I. Introduction

“There is a delight in the hardy life of the open. There are no words that can tell the hidden

spirit of the wilderness that can reveal its mystery, its melancholy and its charm. The nation

behaves well if it treats the natural resources as assets which it must turn over to the next

generation increased and not impaired in value. Conservation means development as much as

it does protection.”

— Speech by Theodore Roosevelt in Osawatomie, Kansas, August 31, 1910.

Climate studies have underscored the connection between human activity, global warm-

ing, and the increase in natural disasters’ strength and frequency (Van Aalst (2006), National

Academies of Sciences et al. (2016)). Consequently, governments and businesses have imple-

mented policies targeted to reduce the impact of human activity on the planet. However,

even if humanity were to stop all CO2 emissions today, we would still experience the effects

of global warming for the coming decades. For these reasons, local climate change mitiga-

tion strategies such as nature conservation are crucial to diminish the economic losses due to

climate change. However, local mitigation strategies have received relatively lower attention

in the climate change literature (Bouwer et al. (2007)). Estimating the value of natural mit-

igation strategies is essential for assessing the financial impact of local climate change risk

as well as evaluating the trade-offs between nature conservation and economic development.

In this paper, I exploit the advantages offered by municipal bond markets to examine

whether local mitigation strategies, in particular nature conservation, are priced in financial

markets. Municipal bonds provide an ideal setting for studying this question since investors

need to account for local climate-related risks when pricing these assets. As opposed to

firms, municipalities cannot move to avoid climate change risk and need to rely on mitigation

strategies. This local risk affects tax revenue and the likelihood that a municipality can repay

the bonds issued. Hence, I can use the municipal bond market to infer the value of nature

conservation as a mitigation strategy to the risk of weather calamities. On the other hand,

municipal bonds trade sparsely, with an average of 2.88 trades per year. To overcome this
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limitation and perform the event study, I compute county-level volume-weighted average

bond yields as well as estimate a repeated sales model as proposed by Auh et al. (2021).1

Quantifying the value of natural capital is difficult for a few reasons.2 First, natural

capital is inherently a non-traded asset. In addition, the presence of natural capital might

be correlated with time-varying local economic conditions. To circumvent these problems, I

identify the mitigation value of natural capital using a quasi-experiment setup that exploits

local extreme weather shocks and natural capital loss events. In other words, the quasi-

experiment setup can be described by the following example. County A and county B have

similar characteristics and similar natural capital stock. At time t, county B experiences a

loss in natural capital and at time t + 1, the two counties experience an extreme weather

event.3

The results show that the market does not price the value of natural capital until an

extreme weather event hits. In particular, the yield spread between counties that experience a

natural capital loss and those that do not, i.e., mitigation premium, increases from effectively

zero to an average of 17 basis points (5.71% of average yield). The effect of mitigation (or

lack thereof) could increase the municipality’s cost of debt by between $3.2 and $5.9 million

over the life of the bond.4 Moreover, bonds used to fund infrastructure projects and those

issued by farming-dependent counties display the highest increases in yields. The effects

of natural capital loss are also reflected in neighboring counties and other macroeconomic

indicators such as population migration and personal income.

This study is the first to identify a mitigation premium and quantify the economic value

1Among many others, see Case and Shiller (1987), Goetzmann (1992), Francke (2010), and Garzoli et al.
(2021) for examples of repeated sales models in real estate. For corporate bonds applications, see Spiegel
and Starks (2016) and Robertson and Spiegel (2017).

2Economists have considered natural resources as an asset or capital stock that provides a series of
services or ”income,” and the depletion or destruction of these resources is related to the depreciation of the
natural capital value. (Gray (1914) and Barbier (2019)). This natural capital approach formally proposed
by Hotelling (1931) became standard in environmental and resource economics.

3Figure 1 provides a graphical representation of this example.
4This back-of-the-envelope calculation utilizes the in-sample average bond yield and maturity, the esti-

mated mitigation premium for all bonds and revenue bonds, and the average annual county bond issuance.

2



of natural capital on municipal bond markets. Overall, the results provide exciting insights

regarding the value of natural capital as a mitigating green infrastructure and nature’s eco-

nomic value for the fight against global warming. This analysis has clear policy implications

for local and state governments as it pertains to the importance of nature conservation.

The insights presented in this paper are in line with Goldsmith-Pinkham et al. (2020)

which shows that exposure to sea-level rise (SLR) increases municipal bond yields. The

study shows that the pricing of SLR risk began in 2013. This effect might be due to the

more extensive media attention as well as the multiple extreme weather events experienced

during these years. However, the authors do not find evidence that municipal bond markets

consider immediate flood risk.

Another strictly related study is the one by Auh et al. (2021), which analyzes the effect of

natural disasters on municipal bonds. In particular, they utilize the repeated sales approach

to overcome the lack of recorded bond transactions at a high enough frequency. The results

show that counties hit by natural disasters experience lower bond returns mainly driven

by revenue bonds. My paper complement these insights by exploring the implications of

mitigation strategies for counties facing natural disaster risk.

As it pertains to mitigation from climate change in the finance setting, in a recent work-

ing paper, Hong et al. (2020) develop a theoretical model that describes the relationship

between costly mitigation, beliefs regarding the consequences of global warming, and the

impact on capital stock. Also, the authors use their model to estimate the value of seawalls

for hurricane protection. The paper provides a theoretical framework that highlights the

limitations of competitive markets when considering mitigation expenditure. My analysis

integrates the theoretical intuition in Hong et al. (2020) with empirical estimations of the

impact of mitigation ”infrastructures” on local economies and municipal bonds.

The results reported in this paper also complement the general and growing literature on

financial assets and climate risk. Scholars have analyzed the relation between environmental
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risks and the cost of capital (Sharfman and Fernando (2008), Chava (2014), and Delis et al.

(2019)), firm valuation (Bansal et al. (2016), Berkman et al. (2019), Hong et al. (2019)),

operating performance (Barrot and Sauvagnat (2016) and Addoum et al. (2020)), and cor-

porate policies (Dessaint and Matray (2017)). As capital markets are concerned, climate risk

also affects the allocation of credit by banks (e.g., Cortés and Strahan (2017) and Brown

et al. (2020)) and the beliefs of institutional investors (Krueger et al. (2020)). In regards

to ”green” bonds, Baker et al. (2018), Larcker and Watts (2020), and Flammer (2021) pro-

vide interesting insights on the pricing of these novel financial instruments. I contribute to

this literature by analyzing the value of natural capital that protects local economies from

negative shocks from natural disasters.

This paper relates to the environmental literature and the studies on nature conservation.

A strand of the conservation literature has investigated the widespread downgrading, down-

sizing, and degazettement (loss of legal protection for an entire protected area) and how these

phenomena affect nature’s ability to protect essential habitats, contribute to the alleviation

of climate change, and the general implications for environmental preservation. Mascia and

Pailler (2011), Mascia et al. (2012), Forrest et al. (2015), Kroner et al. (2016), and Kroner

et al. (2019) describe PADDD events and comment how these events damage biodiversity, in-

crease global warming, and accelerate deforestation. Building on their insights, the analysis

in this paper bridges between conservation studies, economics, and finance and measures in

economic terms some of the externalities of PADDD: higher cost of debt, increased weather

damages, population migration, and lower personal income.

Previous studies in the conservation literature explored the benefit of protecting nature

from human development. Multiple studies have shown that nature can reduce risks from

natural disasters, as well as stimulate biodiversity and collect greenhouse gasses from the
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atmosphere.5 Ferrario et al. (2014) present compelling evidence that coral reefs provide

substantial protection from natural hazards in coastal communities. Also, the importance of

mangrooves, floodplains, and forests is highlighted by Sudmeier-Rieux et al. (2013), Murti

and Buyck (2014), and Da Silva and Wheeler (2017). Finally, Kousky and Walls (2014),

Indaco et al. (2021), Johnson et al. (2020), Nguyen et al. (2020), Rezaie et al. (2020), Walls

et al. (2020), Chang et al. (2021) and Costanza et al. (2021) focus their attention on protected

areas (PAs) and mitigation from storms and floods. Hence, I build upon the findings in this

literature and highlight the financial implications for counties relative to their exposure to

climate risk and natural capital.

As it pertains to the economic literature, scholars have studied the short and long-term

impact of natural disasters on economies. Recent research shows that natural disasters’ ad-

verse effects persist for many years up to at least ten. Among the many papers, a recent

study by Jerch et al. (2020) analyzes the implications of hurricane strikes on local govern-

ments’ revenue, expenditure, and borrowing dynamics. This study shows that hurricanes

reduce tax revenues and expenditures and increase the cost of debt. Moreover, these losses

are found to be persistent for at least ten years after a hurricane strike. The results provided

by Jerch et al. (2020) emphasize the importance of researching mitigating aspects that could

decrease the economic damages resulting from extreme weather events.

Another relevant work by Hsiang and Jina (2014) highlights the long-term effects of hur-

ricanes on a country’s economy. They provide robust evidence that national incomes decline

and do not recover to pre-disaster trends within twenty years. Another socio-economic effect

of hurricanes regards migration. In fact, Mahajan and Yang (2020) show that hurricanes in

foreign countries cause an increase in migration to the United States. Also, Strobl (2011)

provides evidence that economic growth is affected by migration subsequent to a hurricane

5See Wilkie et al. (2006), Hannah (2008), McDonald et al. (2008), Sudmeier-Rieux et al. (2013), Ferrario
et al. (2014), Kousky and Walls (2014), Murti and Buyck (2014), Da Silva and Wheeler (2017), Narayan
et al. (2017), Indaco et al. (2021), Johnson et al. (2020), Nguyen et al. (2020), Rezaie et al. (2020), Walls
et al. (2020), Chang et al. (2021), and Costanza et al. (2021).
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strike.

With respect to the benefits of adaptation infrastructure, the study by Narayan et al.

(2017) shows the importance of nature preservation and its direct impact on weather damages

during a hurricane. In particular, the authors analyze Hurricane Sandy and the damages

caused by this storm to the northeast coast of the U.S. in 2012. They estimated that

coastal wetlands avoided about $625 million in direct flood damages. This study displays

the importance of nature-based solutions for risk mitigation from natural disasters. Another

important study by Johnson et al. (2020) shows that the avoided damages from future

floods exceed the cost of acquisition and conservation of natural land in floodplains with

larger natural areas exceeding costs by a factor of at least five to one.

Human-made infrastructure is also valuable for climate change risk mitigation. In fact,

Kelly and Molina (2020) quantify the effect of climate adaptation infrastructure on property

prices. They show significant increases in property value after the infrastructure project is

complete. Moreover, they estimate $3 billion in aggregate net benefits from all adaptation

projects in Miami-Dade county highlighting the importance of mitigating infrastructure for

local economies.6

Overall, the results proposed in the paper highlight the effects of natural capital loss for

the municipalities’ cost of debt and local economies. The analysis informs policymakers about

the relationship between climate change risk, local cost of debt, and nature conservation.

Understanding the relationship between mitigation and local climate change risk in municipal

bond markets allows estimating the value investors assign, if any, to mitigation and the risks

related to global warming. Also, this paper contributes to the literature on natural capital

valuation. In fact, the market reaction to natural capital loss approximates the value of

nature conservation in financial markets as it pertains to mitigation from extreme weather.

The remainder of the paper is organized as follows. Section II offers some anecdotal

6Similar insights are discussed in Fell and Kousky (2015), Jin et al. (2015), Barrage and Furst (2019),
Kim (2020), and Walsh et al. (2019).
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evidence related to the importance of protected areas and an example of PADDD. Section

III provides a description of the data and summary statistics. Section IV includes the

empirical approach, the results, and a series of robustness tests. Finally, Section V discusses

the implications of the study.

II. Background

A. Anecdotal Evidence of the Importance of Protected Areas

The environmental economics literature has highlighted the importance of nature preser-

vation and its direct impact on weather damages using many hurricanes that hit the United

States as case studies. The study by Narayan et al. (2017) is a clear example showing

that coastal wetlands were able to avoid about $625 million in direct flood damages during

Hurricane Sandy.

In some instances, local governments have realized the importance of nature and how

it directly impacts their economies. New York prides itself on supplying its citizens one of

the highest quality waters in the U.S. New Yorkers have to thank the hills and valleys of

the Catskills watershed and the Delaware River. The New York administration has invested

around $1.5 billion in green infrastructure to preserve their water supply and protect these

lands. On the other hand, gray infrastructure (filtration plants, dams, etc.) would have cost

New Yorkers about $8 billion (Tercek and Adams (2013)). Thus, nature not only protects

the water cycle efficiently and cost-effectively but also has multiple positive externalities

when protected.

The importance of nature is not limited to water. Another clear aspect regards the

protection nature provides from weather events and the dire threats of global warming. For

instance, in recent years, Iowa started to experience floods like never before in its history

and Iowans endured on their skin the issues of climate change. These difficulties ignited
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a movement that culminated in the passing of the country’s largest conservation ballot

initiative. This ballot funds the restoration of Iowa’s floodplains protecting essential wildlife

habitats, reducing water pollution, shielding communities, businesses, and farmlands from

floods, and protecting fertile soil. This $150 million fund will generate enormous societal,

economic, and environmental benefits for the people of Iowa (Tercek and Adams (2013)).

B. Example of PADDD

One National park affected by PADDD is the Yosemite National Park. The park was

first protected in 1864 by a land grant and became a national park in 1890. The park

also became a World Heritage Site in 1984 for its geological and ecological values and hosts

more than four million tourists every year. The park experienced many legal changes to its

boundaries and protection. In fact, the park was downgraded in 1892, 1901, and 1913 for the

building of various infrastructures such as wagon roads, turnpikes, electrical lines, and dams.

In addition, Yosemite was downsized by 1,309.30 km2 (505.52 mi2), which corresponded to

34% of its original size of 3,886 km2 (1,500 mi2), in 1905 and 1906 to allow for forestry and

mining activities (Kroner et al. (2016). Other legislations partially offset the downsizing by

about 293 km2 (113 mi2) and created another wilderness area in 1964, amounting to 57% of

the downsized land. Currently, the Yosemite National park is 77% of its original size and

19% of the originally protected lands are now under other forms of protection (Kroner et al.

(2016)). These legal actions have caused fragmentation in unprotected forests near Yosemite

as well as ecosystem damages (Kroner et al. (2016)).

Among the ecosystem damages, PADDDmight have affected the park’s ability to preserve

valuable water resources. In fact, the park hosts the origin of two rivers, Tuolumne and

Merced River, which provide clean water to many areas in California. The Tuolumne river

alone provides drinking water for over 2.7 million people in the San Francisco Bay area

(Tuolumne River Trust (2021)).
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III. Data and Summary Statistics

A. Weather Damages

The National Oceanic and Atmospheric Administration (NOAA) collects data on crop

and property damage (in US dollars) caused by weather events. For this study, I use the

period starting in 1969 and ending in 2020.7 Figure 2 and 3 report the frequency and

economic damages (adjusted for inflation) of billion-dollar disaster events by event category

in the United States from 1980 to 2020. First, we notice how large disasters have increased

in frequency and impact in dollar terms. Moreover, the breakdown by type of events shows

that a large portion of the damages is caused by events characterized by heavy precipitation

(tropical cyclones).

Table I reports summary statistics related to weather damages. Specifically, we notice

that the states impacted the most in absolute dollar terms are Texas, Florida, and Louisiana.

These states are often subject to large tropical cyclones and hurricanes, which bring great

devastation.

B. Protected Area Downgrading, Downsizing, and Degazettement

One of the critical datasets of this study is the Protected Area Downgrading, Downsizing,

and Degazettement (PADDD) data collected by the WWF (Mascia et al. (2012) and Conser-

vation International and World Wildlife Fund (2019)). For this dataset, protected areas are

defined following the International Union for Conservation of Nature (IUCN) definition: ”A

protected area is a clearly defined geographical space, recognized, dedicated, and managed,

through legal or other effective means, to achieve the long-term conservation of nature with

associated ecosystem services and cultural values” (Dudley (2008)).8

7The data can be found here: https://www1.ncdc.noaa.gov/pub/data/swdi/stormevents/csvfiles/.
8The appendix contains a brief history of the development of the National park system in the US.
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Despite a net growth of PAs, research in ecology and conservation has shown widespread

and unreported PADDD (Mascia and Pailler (2011), Mascia et al. (2014), Forrest et al.

(2015), Pack et al. (2016), Cook et al. (2017), and Kroner et al. (2019)). Downgrading is a

decrease in legal restrictions on the number, magnitude, or extent of human activities within

a PA Downsizing is a decrease in the size of a PA as a result of the excision of an area of

land or sea area through a legal boundary change. Lastly, degazettement is a loss of legal

protection for an entire PA (Mascia and Pailler (2011)).9

The PADDD dataset contains 3,700 enacted PADDD events affecting about two million

km2 (0.77 million mi2) across 73 countries from 1872 to 2018 (Kroner et al. (2019)). The

reasons for the enactment of PADDD range from industrial-scale resource extraction and

development to land claims and local land pressures. A small fraction of the PADDD is

meant for conservation planning (Mascia and Pailler (2011)).

These data are crucial to identify the counties that experience a loss in natural capital.

The dataset collected by the WWF provides ArcGIS Pro shapefiles that describe the perime-

ter of the PA affected by a PADDD event. I use ArcGIS Pro to identify the county in which

each protected area resides. This allows me to create a panel of counties affected by PADDD

from 1900 to 2018. I restrict the study to the US since the drivers of PADDD across countries

might be different and might be influenced by differences in legal framework, economic and

political environment, as well as other observable and unobservable circumstances.

Figure 5 and 6 show the location of the PAs that have been downgraded, downsized, or

degazetted during the sample period starting from 1976 to 2020. This sample period is used

for the analysis of weather damages, population migration, and personal income. For the

analysis of municipal bonds, I use the sample period from 2005 to 2020 due to the limited

time series for municipal bond information. During the 1976-2020 period, 94% (405) of the

county events are downgradings. Instead, from 2005-2020, the downgrades comprise 92%

(289) of the sample. The remaining events in both sample periods are downsizings and there

9A graphical representation of the PADDD is reported in Figure 4.
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are no degazettements from 1976 to 2020 in the US.

Table II provides summary statistics related to the PADDD. We notice that the year

with the largest area affected by this phenomenon is 2016, with 31,859 km2 (12,301 mi2).

This area excludes Alaska and Hawaii. If we include these two states, the area impacted is

103,231 km2 (39,858 mi2). 2016 is also the year with the most counties affected by PADDD,

followed by 1986, 2011, and 2012. These years also report the largest area affected in the

sample period. To better understand the size of the PAs affected, 31,859 km2 (12,300 mi2)

is about the size of Belgium or the equivalent of nine Yellowstone National Parks.10 Going

forward, I will discuss the summary statistics related to the 2005 to 2020 sample, given that

the main focus of this study is the municipal bond market. 11

It is also interesting to notice that more than half of the PADDD is concentrated in rural

areas. In fact, for the period from 2005 to 2020, about 58% of the events and 41% of the

area affected is in urban areas classified as micropolitan or noncore (Table III).

With respect to the geographical distribution of PADDD events, Table IV shows that,

in the period from 2005 to 2020, the states with the most events are Arkansas, California,

Florida, Washington, New Mexico. Moreover, 45 of the 48 contiguous states experience at

least one PADDD event in the sample period.

The WWF dataset also includes the reported cause of PADDD. Table V highlights how

the main reason for PADDD is characterized as subsistence, defined as non-commercial

or small-scale commercial, artisanal, or non-industrial (non-mechanized) extraction or pro-

duction activities.12 Moreover, a smaller portion of the natural capital loss is caused by

infrastructure projects, mining, and oil and gas extraction. The rest of the PADDD is due

to land claims or other reasons. Due to the lack of detailed information, the legal and

political procedures that drive the enactment of a PADDD are unclear. However, the down-

10If we include Alaska and Hawaii, the size of the PADDD in 2016 is 103,231 km2, or as large as Iceland
or 30 Yellowstone parks.

11The PADDD summary statistics for the 1976 to 2020 sample are available in the appendix.
12The definitions for all causes of PADDD is reported in the appendix.
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grade, downsize, or degazettement of a protected area needs to be approved by the federal

government.13

C. Precipitation Data

To estimate the extreme weather exposure, I utilize the daily precipitation data contained

in the Parameter-elevation Regressions on Independent Slopes Model (PRISM). This dataset

is publicly available on Dr. Wolfram Schlenker’s website of Columbia University.14 The

dataset comprises total precipitation on a 2.5×2.5-mile grid for the contiguous United States

from 1950 to 2019.

I use the precipitation data because some of the most frequent and damaging extreme

weather events in the past years have been severe storms and tropical cyclones (Smith and

Katz (2013), Figure 2, and Figure 3). Those weather events come with ample precipitation,

which causes, together with storm surges in coastal areas, flooding. Of course, a portion

of the damages from these events is caused by high winds. However, strong winds and

heavy precipitation usually come together during these weather events. In addition, evidence

from the environmental literature shows that natural areas such as forests and wetlands

are extremely successful in mitigating extreme precipitation events and tropical cyclones.15

Lastly, scholars have highlighted how a warming climate will bring together more extreme

precipitation (Allen and Ingram (2002),Wu et al. (2013), and Donat et al. (2016)). Section

IV contains a more detailed discussion of the natural disaster exposure measure.

D. Municipal Bonds Data

The municipal bond data is collected from the Municipal Securities Rulemaking Board

(MSRB). This dataset contains all municipal bond transactions from 2005 to 2020. The

13In the appendix, I provide additional discussion regarding why natural capital loss events might happen.
14http://www.columbia.edu/~ws2162/links.html.
15See footnote 5.
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variables utilized in this study are the bond yield, coupon rate, years to maturity, and size

of the issue. Following Schwert (2017), I utilize only fixed-coupon and tax-exempt bonds

that trade at least ten times.16 This latter specification guarantees some uniformity and a

minimum level of liquidity.

In addition, following Chalmers (1998), I exclude trades after a bond’s advance refunding

date since the bond can be considered risk-free after this point. Next, I exclude the trades

in the first three months after issuance and the last year before maturity due to the noisy

nature of these periods (Green et al. (2007) and Schultz (2012)). To remove complications

with embedded options, I remove callable bonds. I complement the data from MSRB with

information regarding bond characteristics from Bloomberg. Specifically, I collect the issuer

name, issue size, county of issuance, sources of funds, general obligation (GO) indicator, use

of proceeds, credit rating, insurance status, and pre-refunding status and timing. Moreover,

I hand-collect the county affiliated to each bond if this information is missing.

Finally, I collect the municipal bonds AAA-rated tax-exempt benchmark curve from

2005 to 2020 from Bloomberg and use it as a benchmark for the municipal bond credit

spread analysis.17 The transaction data from the MSRB, together with the information

from Bloomberg and the AAA-rated curve, allow me to construct a monthly panel of volume-

weighted yields at the bond level.

Following Green et al. (2010), I clean the data from obvious data errors. Specifically,

I eliminate all observations for a bond if the coupon and maturity are missing for all ob-

servations. I also remove observations with the coupon recorded as greater than 20%, or if

the maturity is recorded as over 100 years. Moreover, I exclude all transactions where the

price is less than 50% of face value. Then, I eliminate transactions with prices greater than

150% of face value with a short time to maturity. Lastly, I remove trades recorded after the

maturity date. The final sample contains 736,019 transactions for 82,310 bonds.

16I remove federally taxable bonds and bonds eligible for alternative minimum tax (AMT).
17The results of the robustness tests using yield spreads are reported in the appendix.
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Following Cantor and Packer (1997), I convert the rating scale to a numeric classification.

For example, AAA (Moody’s) and Aaa (Fitch and SP) are converted into the value 1, AA+

and Aa1 are classified as 2, AA and Aa2 as 3, and so forth.

Also, I classify bonds as ”physical” if the use of proceeds mentions a specific infrastructure

project. For example, a bond issue that mentions as use of proceeds ”water utility” or

”highway” will be classified as ”physical.” On the other hand, a bond that cites as use

of proceeds ”student loans,” ”lawsuit,” or ”refunding” will be classified as ”non-physical.”

This classification is helpful to exploit the cross-sectional heterogeneity in the bonds’ use of

proceeds and control for within-county heterogeneity in disaster exposure.18

E. National, State, and Local Parks

To ensure that the matching analysis accounts for important observable county charac-

teristics as it pertains to natural capital, I collect the protected area of each county using the

Protected Area Database (version 1.4) from the United States Geological Survey.19 The Pro-

tected Areas Database of the United States (PAD-US) is the nation’s inventory of protected

areas including public open space and voluntarily provided private protected areas.20

This information is important because it allows comparing counties with similar-sized

protected areas. Unfortunately, these data can be used only as a time-invariant specification

for the matching algorithm because, as noted by the USGS, the comparison between multiple

PAD-US versions with the purpose of comparison is highly discouraged. Many of the changes

among versions of the PAD-US are due to improvements to agency and organization GIS

systems and data, rather than actual changes in protected area acquisition on the ground.

18The appendix contains a complete list of the use of proceeds that are classified as ”physical” and ”non-
physical.”

19https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/

science/pad-us-statistics-and-reports?qt-science_center_objects=0#qt-science_center_

objects.
20Further detail regarding this dataset is available in the appendix.
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F. County Data

The county-level economic and population data are collected from the US Bureau of

Economic Analysis (BEA) and the US Bureau of Labor Statistics (BLS). For this study, I

utilize county-level population, personal income, and unemployment rate. The sample period

utilized starts in 1969 and ends in 2020. The BEA defines personal income as the income

that people get from wages and salaries, Social Security and other government benefits,

dividends and interest, business ownership, and other sources. The employment rate is

defined as the ratio of employed people and the total labor force. I also collect information

on the counties’ economic characteristics from the Economic Research Service of the US

Department of Agriculture. Specifically, I utilize the 1979, 1986, 1989, 2004, and 2015

County Typology Codes. These codes classify all US counties into six mutually exclusive

categories of economic dependence together with other categories of policy-relevant themes.

A county can be classified as economically dependent on farming, mining, manufacturing,

Federal/State government, recreation, or non-specialized.

I supplement the county economic information with financial information from the Census

of Governments, which reports local government debt, cash and securities, and tax revenue.

Specifically, I measure revenue concentration using general revenue information, including

intergovernmental (IG) revenue from the federal government, IG revenue from the state

government, and local revenue. These three sources of revenue are utilized to compute the

Hirfindahl-Hirchman index (HHI) to define revenue concentration. Next, I construct quintile

indicators for the debt-to-tax-revenue ratio and revenue concentration.

Lastly, I estimate the county’s elevation and distance from the coast based on its centroid

coordinates.
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G. FEMA Federal Disaster Aids

I collect data on federal disaster aid to households and local governments from the Federal

Emergency Management Agency (FEMA). Also, I utilize the information on presidential

disaster declaration to identify disaster location, declaration date, and the amount approved

for disaster aids. Counties included in a presidential disaster declaration are eligible for public

assistance, individual assistance, and/or hazard mitigation grants. The public assistance

program funds local governments to allow repairs for damages caused by disasters. The

individual assistance program targets homeowners and renters who experience damages from

disaster events. Lastly, the hazard mitigation assistance program funds project aimed at

preventing future disasters.

The information for the public assistance and hazard mitigation assistance programs is

at the project level and includes the county, disaster date, total project cost, and federal

contribution to the project. Instead, the individual assistance program data is at the zip-code

level. I aggregate the information from all three programs and compile a measure of county-

year federal disaster transfers similar to Auh et al. (2021) (i.e., FEMA Transfers). Next,

I classify the sample into two groups, below-median and above-median FEMA transfers,

creating a dichotomous indicator variable.

To conclude the data and summary statistics section, Table VI contains the summary

statistics of the variables utilized in this paper.

IV. Empirical Analysis

This section describes the empirical approach I utilize to study the importance of natural

capital.
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A. Extreme Weather Exposure

In order to estimate the local extreme weather exposure, I utilize precipitation data.

The use of precipitation is in line with the evidence from the climatology research that

shows increases in precipitation intensity in the contiguous United States due to climate

change (e.g., Hennessy et al. (1997), Rosenzweig et al. (2002), and Balling and Goodrich

(2011)). Moreover, nature is particularly effective in reducing the damages from heavy

precipitation.21 Economists have utilized various physical weather measures (wind speed,

rainfall, or storm surge) to preserve the exogenous nature of the shock (Noy (2009) and

Hsiang and Jina (2014)). For instance, many studies use only hurricanes as extreme weather

events. However, a measure of extreme events adjusted for local characteristics is necessary

to expand the analysis to areas unaffected by large hurricanes. A measure of this type will

include smaller-scale events, but these events are still rare and damaging for the locality

under consideration.

The extreme weather exposure measure used in this paper is adapted from Jerch et al.

(2020). Specifically, I start from the daily precipitation data from the PRISM dataset. First,

I average the daily precipitation across all 2.5×2.5-mile grids in the county and subsequently

average them together to create a monthly precipitation measure. This latter value needs

to be adjusted to account for county-specific weather characteristics. For this reason, I

standardize the average monthly precipitation using the monthly mean over the previous

ten years and the standard deviation computed over the same period. Next, for each county,

I compute the maximum standardized precipitation experienced during each year.

Weather Exp.c, t = max

(
Precipitationc,t − Average Precipitationc,0−10

St.Dev. Precipitationc,0−10

, 0

)
(1)

21See footnote 4.
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Weather Exp.c, t allows to identify the local shocks caused by extreme weather and study

the impact of these events accounting for time-varying county weather characteristics. An-

other advantage of this measure regards the heterogeneity of natural disaster mitigation

across the United States. Specifically, counties around the US are exposed to very different

threats from global warming, as diverse as wildfires, hurricanes, and droughts. Consequently,

each counties’ past exposure affects how they prepare for future events. For instance, Har-

ris County (home to Houston) in Texas is very often exposed to torrential rains as well as

tropical storms and hurricanes. On the other hand, El Paso County (Texas) is threatened

by severe droughts. These counties have different characteristics as it pertains to weather

exposure and mitigating infrastructure. The measure I propose accounts for these regional

differences within the state.

Lastly, the use of this locally-adjusted measure is also supported by the environmental

literature. In fact, various studies show that rainfall intensity is heterogeneous across counties

and there is large spatial heterogeneity in disaster-triggering precipitation thresholds (Balling

and Goodrich (2011), Pielke and Downton (2000), and Liu et al. (2020)).

B. County-Level Bond Yields

As highlighted by Auh et al. (2021), municipal bonds trade infrequently with an average

of 2.88 trades per year. For this reason, running an event study would yield biased estimates.

In order to overcome this complication, I compile a yield measure at the county level using a

volume-weighted average of bond yields. This allows me to estimate the county-level effect

on municipal bond yields during an extreme weather event.22

22For robustness, I perform a similar analysis to Auh et al. (2021) using the repeated sales approach.
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C. Identification

In this section, I examine the pricing implications of natural capital loss on municipal

bonds. Investors should account for the value of natural capital when pricing municipal

bonds since nature provides mitigation from extreme weather and climate change risk. Con-

sequently, municipal bonds of counties that experience natural capital loss should be trading

at a premium, irrespective of the timing of an extreme weather event. However, I conjecture

that the importance of natural capital might become salient to investors only after a shock

to local climate change risk. I test this hypothesis using a quasi-experiment setup. I study

the behavior of municipal bond markets around an extreme weather event. In this analysis,

I compare counties that experienced a loss in natural capital to those that did not using

county-level volume-weighted average yields of municipal bonds.

As briefly discussed in the introduction and figure 1, the ideal experiment would entail

comparing counties, county A and county B, with similar characteristics and natural capital

stock. At time t, county B loses part of its natural capital and at time t + 1, an extreme

weather event hits both counties. This empirical design aims to compare municipal bonds

that trade in the same year and state and have similar observable characteristics, except for

having experienced a natural capital loss event or not.

The sample includes counties that experienced extreme weather events and that contain

protected areas.23 Also, The sample excludes treated counties from the control group in

future periods to avoid negative weights for the average treatment effects (ATE) in the

presence of heterogeneous treatment effects as highlighted by Borusyak and Jaravel (2017)

and De Chaisemartin and d’Haultfoeuille (2020).24

I select extreme weather events using the precipitation measure presented in section IV.A.

The months selected as extreme weather events are months in which a county experienced

23I define protected areas using the Protected Areas Database of the United States (PAD-US). More details
regarding this dataset is available in the appendix.

24I follow this step in all difference-in-difference estimations presented in this paper and the appendix.

19



average precipitation greater than the 95th percentile of the distribution of past precipitation.

During these months, the counties selected faced exceptional levels of precipitation which

likely disrupted regular business and destroyed property and crops.

Following is the difference-in-difference model used for the estimation of the natural

capital effect after an extreme weather event:

Avg. Y ieldc,t =
5∑

t=−5

1(Month = t)× γt Treated+ θt
′Xc,t + δs,t + ϵc,t, (2)

for county c in month t. Treated is an indicator for a county that has experienced natural

capital loss and X represent a vector of control variables. Lastly, δs,t represent state-year

fixed-effects.

The coefficient of interest is γt, which represents the difference in average volume-weighted

yields between counties that experienced a natural capital loss event as of time t = 0 and

those that did not. I considered a county as treated if a PADDD was enacted in its territory

within three years before the weather event. The vector of controls includes Weather Exp1−5

which represents the natural disaster exposure from year t − 1 to t − 5.25 This variable

reduces the concern that the results reported are caused by differences in pre-existing disaster

mitigation programs implemented by more exposed counties.

Moreover, X controls for county characteristics (urban-rural classification, population,

density, personal income, unemployment rate, ratio of protected area to total county area,

proximity to the coast, elevation, quintile indicators for debt-to-tax-revenue ratio and revenue

concentration, dichotomous indicator for FEMA transfers, and trend variables (t − 2 to

t − 1) for population, density, personal income, and unemployment rate), municipal bond

characteristics averaged at the county level (coupon rate, rating, years to maturity, years

since issuance, size of the bond issue, and the ratio of trading volume to amount outstanding),

25This measure is calculated using the maximum standardized precipitation (equation (1)) that the county
experience from year t− 1 to t− 5. The reason for this choice is due to the rare nature of these events.
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and the intensity of the weather event.26 The use of state-year fixed effects allows controlling

for time-varying local economic conditions. Hence, the coefficient estimates are identified

from the difference in yields of bonds issued in the same state and trading in the same year.

D. Main Results

Table VII reports the results of the difference-in-difference analysis. Column (1) includes

all bonds in the sample and, in columns (2) and (3), I split the sample in revenue and general

obligation bonds, respectively. I utilize t−2 as a reference since some extreme weather events

could be forecasted in advance and markets might reflect this forecast accordingly.

The coefficients in columns (1) to (3) show that the difference between treated and

control counties turns from statistically indifferent from zero to positive and significant after

the extreme weather event for all months except for one (month 4). In other words, counties

that lose natural capital display a ”mitigation premium” compared to similar counties that

do not experience natural capital loss. As we can see, the effect is stronger for revenue bonds

(column (2)), possibly because these bonds are backed by the revenue of the specific project

and not by the overall municipal tax revenue.

The economic significance of these results is large. In fact, the yields change from statis-

tically indifferent from 0 to between 11 and 22 basis points, which corresponds to an average

pre-post spread of 5.7% of an average bond yield (3.04%). To better understand the impact

of the mitigation premium, I can estimate the effect on the cost of debt for the county,

assuming that the yield after the disaster reflects the updated risk of the county. Specifi-

cally, an average county with $119.72 million in annual municipal bond issuance could save

an average of $207,913 in annual coupon payments if they ”protect” their protected areas

26The National Center for Health Statistics (NCHS) classifies counties into six urban-rural categories: large
central metropolitan areas, large fringe metropolitan areas, medium metropolitan areas, small metropolitan
areas, micropolitan areas, and noncore. See appendix for further details. The quintile indicators for the
debt-to-tax-revenue ratio, revenue concentration, and FEMA transfers are included following the insights in
Auh et al. (2021). I control for the pre-trends and ex-ante county characteristics to satisfy the parallel trend
assumption.

21



and $3.21 million over the average life of the bonds.27 The effect is much larger for revenue

bonds with an average annual savings of $389,289 and $6 million over the average life of the

bonds.28

I also show in Table VIII the results with regression specifications which include a triple-

interaction term between the treatment, the period after the extreme weather event, and the

disaster intensity (Weather Exp.). As we can see, the results are similar when aggregating

the time period to pre- and post-disaster. Moreover, the intensity of the disaster is important

when considering the change in the local cost of debt related to climate change risk.

Although unlikely, the results could be confounded by the intensity of extreme weather

events in areas affected by natural capital loss. In other words, if, during the sample period,

counties that experienced PADDD also randomly experienced stronger weather events, the

results would not be driven by natural capital loss but by the difference in the strength of

the weather event. To diminish the concern from this possible source of bias, I control for

extreme weather event intensity and analyze the difference in weather intensity between the

two samples. Specifically, I compare the monthly raw and the standardized precipitation for

the event months used in the difference-in-difference estimation for counties that experienced

natural capital loss and those that did not. The differences between the two measures for the

two samples are statistically indifferent from zero (0.098, t stat=0.096 ; 0.017 t stat=0.093).

It is relevant to note that there are some discrepancies between the results in Table VII

and those reported in Auh et al. (2021). Specifically, the authors find that natural disasters

do not affect general obligation bonds except for specific local financial conditions. This

difference could originate from two sources. First, I utilize precipitation, a purely exogenous

event, to identify shocks to the county’s climate change risk awareness compared to the

normalized damage measure used in Auh et al. (2021).

Second, the definition of treated and control groups between the two studies is differ-

270.174% × $119.72 million × 15.43 years.
28These estimates do not account for the opportunity cost of not using the land for economic activity.

22



ent. Specifically, I only include counties that experienced a natural disaster event and the

treatment is identified using natural capital loss. On the other hand, Auh et al. (2021) are

interested in estimating the effect of natural disasters and, for this reason, they compare

counties hit by weather damages to similar counties not hit by a disaster and at least 500

miles away. Consequently, it is plausible that counties affected by natural capital loss have

increased climate risk exposure, which increases the overall risk of future county’s cash flows,

conditional on being hit by a weather event. This latter assumption does not hold for the

treatment and control in Auh et al. (2021); it is not necessary for their study and does not

affect their results.

D.1. Discussion on the Exogeneity of PADDD

A discussion on the exogeneity of the natural capital loss events is necessary. A few

reasons suggest that these natural capital events are exogenous. Specifically, PADDD needs

to be approved at the federal level and, for this reason, it is hard to argue that the causes of

PADDD are specific to the county. In other words, unobservable time-varying county-level

characteristics such as diminishing natural resources or worsening crop yields for farming

communities cannot justify the enactment of a PADDD. In addition, I identify the effects

of natural capital loss at the state level using state-year fixed effects. Moreover, I utilize

county fixed effects for bond level analysis. These fixed effects take into account time-

invariant unobservable county characteristics and time-variant unobservables at the state

level. Moreover, the matching strategy using ex-ante county characteristics and trends as

well as the analysis using the same county provide robustness to the main results.29

Also, after running a logit model, I am not able to identify observable predictors of

29See robustness section.
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PADDD.30 Lastly, 75% of the area affected by PADDD is caused by subsistence (non-

commercial or small-scale commercial, artisanal, or non-mechanized extraction or production

activities for local or personal consumption). These events do not seem to be related to local

unobservable economic trends and characteristics.

To diminish further the endogeneity concerns due to non-random treatment, I use extreme

weather events as purely exogenous weather-related shocks to local economic activity and

climate risk awareness to identify the mitigating effect of nature. At a minimum, the results

reported are the manifestation of a treatment effect on the treated.

E. Discussion of the Channel - Natural Capital Loss and Weather Damages

In order to clarify the drivers of the mitigation premium, I investigate the relationship

between natural capital loss and weather damages. Formally, I hypothesize that counties that

experience a loss in natural capital are more vulnerable to damages from weather events.

The underlying intuition for this hypothesis is based on the notion that protected areas

provide a natural defense mechanism that helps mitigate the destructive strength of natural

disasters.31 To test this hypothesis, I perform a difference-in-difference analysis that exploits

the natural capital loss events as exogenous shocks to the county’s natural capital. The

outcome variable to be analyzed is the CPI-adjusted annual total property and crop weather

damages (log) computed using NOAA data for the period starting in 1969 and ending in

2020. Following is the model utilized for the estimation of the natural capital effect.

Damagesc, t = α + γ1Treated× Post+ γ2Treated+ γ3Post

+γ4Weather Exp1−5 + θt
′Xi,t−1 + δc + δs,t + ϵc,t,

(3)

30The logit model contains the following independent variables: personal income, population, unemploy-
ment, population change, density, density change, weather damages, indicators for urban-rural classification,
debt-to-tax-revenue ratio, revenue concentration, and FEMA transfers. For these variables, except for the
urban-rural classification, I include three lagged terms. I also include the county and state-year fixed effects.
More details are available in the appendix.

31The research that describes this relationship is mentioned in the introduction.
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where Damagesc,t represent the weather damages in county c in year t. Treated is an

indicator for a county that has experienced natural capital loss, Post is an indicator that

equals one for the period after the natural capital loss event, Weather Exp1−5 represent

the natural disaster exposure from year t − 1 to t − 5, and X represent a vector of control

variables. Lastly, δc and δs,t represent the county and state-year fixed-effects, respectively.

For this analysis, I consider an event window that starts five years before the PADDD

event and ends five years after. The controls include the same time-varying county char-

acteristics mentioned in the previous section. Also, I control for local weather exposure to

account for heterogeneity in disaster vulnerability. The coefficient of interest is γ1. The

cohorts are formed using the year of the natural capital loss event. Specifically, I stack the

observations using the PADDD year as year zero.

Table IX reports the difference-in-difference and matching estimates for the annual dam-

ages. In regards to the regression set up in columns (1) and (2), I find that counties affected

by a loss in natural capital experience greater weather damages. The coefficients are eco-

nomically and statistically significant. In fact, after a PADDD event, a treated county

experiences $9.7 million in damages more than a similar county in the control group.

To alleviate the concerns from selection bias and heterogeneous treatment effects, in

addition to the fixed-effect model and difference-in-difference estimation, I estimate the effect

of natural capital using matching.32 First, I restrict the matches to counties in the same

state and with the same urban-rural classification. Next, I utilize propensity score matching

(PSM) to find the best counterfactual for each treated county (those that experienced a

natural capital loss event) using the ex-ante characteristics.0 The variables used are the

following: county extreme weather exposure in the past five years, density, population,

personal income, unemployment rate, tercile indicators for debt-to-tax-revenue ratio and

revenue concentration, a dichotomous indicator for FEMA transfers, natural capital size

32See Callaway and Sant’Anna (2021), Sun and Abraham (2020), and De Chaisemartin and d’Haultfoeuille
(2020) for a discussion on event studies with heterogeneous treatment effects.

32For robustness, I utilize nearest neighbor matching. The results are reported in the appendix.
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(protected area), and trend in population.

The final sample includes only the matched control and treated observations. The results

in column (3) are estimated using the regression:

Damagesc,t = α + γ1Treated+ γ2Post+ γ3Treated · Post , (4)

where γ3 is the coefficient of interest.

This approach is similar to Boulongne et al. (2020) and does not necessitate fixed effects or

control variables since the sample comprises only matched treated and control observations.

The results of the matching are reported in column (3). We can see that the matching

estimates are even larger in magnitude. The counties that experienced natural capital loss

report statistically significant higher annual damages of $23.75 million.

A possible source of bias in the results could be originating from the correlation be-

tween weather damages and the county’s economic activity. For this reason, following Bern-

stein et al. (2019) and Goldsmith-Pinkham et al. (2020), I plot the coefficients of the non-

parametric regression between the standardized precipitation exposure deciles and real estate

prices. The coefficients are estimated relative to the lowest precipitation exposure decile. I

use the Zillow smoothed and seasonally adjusted index for the real estate prices. This index

represents the typical value of homes in the 35th to 65th percentile range. Figure 8 shows

that there is no relation between the extreme weather measure and real estate prices, which

proxy for local economic conditions.33

Lastly, the results could also be influenced by the construction of new infrastructure in

place of the protected area. Specifically, in the 1976 to 2020 sample, 33% of PADDD are

enacted for infrastructure projects. Consequently, at least part of the natural capital is

33These results are different from Goldsmith-Pinkham et al. (2020), which show a positive relation between
sea-level rise exposure deciles and real estate prices. This divergence could be due to the nature of their
measure. Specifically, the SLR exposure will affect mainly coastal counties, which plausibly have higher
house prices due to the proximity to the ocean.
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replaced with some construction (e.g., roads, power lines, bridges) which can be damaged

during extreme weather. To diminish this concern, in unreported results, I use only natural

capital loss events related to subsistence which entail very minimal or no constructions. The

results are qualitatively similar to the ones proposed.

F. Additional Results

F.1. Physical vs. Non-Physical Use of Proceeds

In this section, I exploit the heterogeneity in the use of proceeds to study the cross-

sectional effect of natural capital. Specifically, I classify bonds into physical and non-physical

use of proceeds as discussed in Section III.D. I hypothesize that bonds with physical use of

proceeds are more exposed to climate risk. This is because the bond is directly tied to a

project that could be damaged by extreme weather. Consequently, if natural capital provides

mitigation from extreme weather risk, the effect of the loss of natural capital should be more

pronounced in bonds with the physical use of proceeds. I utilize the same difference-in-

difference model, except that I add a triple interaction term between Treated, Post, and the

physical indicator, and I perform the analysis at the bond level. Since municipal bonds trade

infrequently, I aggregate the yields into a volume-weighted average for the pre and post-

period, respectively. Moreover, trades executed closer to the event month receive greater

weighting. The results in Table X column (1) show that bonds with physical use of proceeds

increase in yields 14 basis points more than non-physical bonds. It is relevant to notice

that the bond-level coefficients on the term Treated × Post are qualitatively similar to the

county-level estimations, providing robustness to the main results.

To provide robustness to the results, I estimate the cross-sectional effect of natural capital

on bonds using matching. First, I restrict the matches to bonds issued in the same state with

the same rating, type (general obligation or revenue), and county FEMA transfers indicator

(i.e., below or above median FEMA transfers). I allow a maximum of two years difference in
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maturity and a maximum of six months difference in the extreme weather event date. Next,

I utilize propensity score matching to find the best counterfactual for each treated bond

(those issued in a county that experienced a natural capital loss event) using the county and

bond characteristics ex-ante the extreme weather event. The variables used are the following:

county extreme weather exposure in the past five years, density, population, personal income,

unemployment rate, natural capital size (protected area), debt-to-tax-revenue ratio, revenue

concentration, trend in population, and bond coupon rate. Following is the model utilized

for the estimation:

yi,t = α + γ1Treated+ γ2Post+ γ3Physical + γ4Treated · Post · Physical, (5)

where Physical represents the indicator for physical use of proceeds. The coefficient of

interest is γ4 which represents the differential effect on physical projects.

The final sample includes only the matched control and treated observations. Specifically,

the sample contains 651 unique bonds from counties that experienced a natural capital loss

event and 1,218 comparable bonds of counties that did not experience a PADDD event.

The estimates in Table X column (2) show that bonds issued for physical projects are more

affected than the rest of the sample by 18 basis points. The results are qualitatively similar

to the estimates without matching.

To provide even further evidence, following Crabbe and Turner (1995), Bernstein et al.

(2019), Larcker and Watts (2020), and Schwert (2020), I estimate the effect of natural

capital loss using paired municipal bonds issued by the same county in the same year that

differentiate only by the use of proceeds. The advantage of this approach is that it removes

the impact of unobservable bond-year factors that might correlate with the security’s risk or

pricing. Eliminating this concern allows finding the more appropriate counterfactual. For

example, in April 2011, Los Angeles County, CA, issued a municipal bond to fund a project

on water utilities. In July of the same year, Los Angeles County, CA, also issued a bond
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with ”refunding” as use of proceeds.

It is clear that the difference in risk between the two instruments would be the impact

of climate change risk and, specifically, the effect of natural capital loss. On the other hand,

this approach considerably limits the number of observations utilized for the estimation.

The results in Table X column (3) describe similar magnitudes to the ones using matching

on county characteristics, both regarding the overall impact of natural capital loss and the

cross-sectional effect on physical bonds.

Overall, the results provide interesting insights regarding the value of nature as it pertains

to mitigating disaster risk. The difference-in-difference and the matching estimators suggest

that the effect of nature should not be due to selection bias or unobservable time-varying

county characteristics.

F.2. Spillover Effects

The effects of natural capital loss might not be limited to the county that possesses the

natural capital. Due to the spatial and economic links between neighboring counties, even

counties not directly impacted by natural capital loss might experience negative consequences

during extreme weather events. In order to study this phenomenon, I identify counties

within a 25-mile radius from a county that experiences a PADDD event as treated counties

(i.e., affected by natural capital loss) and exclude the counties that directly experienced the

PADDD.34

In column (1) of Table XI, I report the results of the regression analysis. Instead, columns

(2) and (3) report the results of the matching estimation. The empirical approach used for

this analysis is equal to the one described in section IV.F.1 and the only difference is the use

of neighboring counties to define the treated and control group. The results in Table XI show

34The distances between counties are great-circle distances calculated using the Haversine formula based on
internal points in the county. The data on county distance is available on the National Bureau of Economic
Research (NBER) website (https://www.nber.org/research/data/county-distance-database).
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that the effect is still persistent when including only neighboring counties in the estimation.

Moreover, this suggests that the economic impact is more widespread since natural capital’s

mitigating effects extend to nearby counties. In addition, as shown in Table X, bonds issued

for physical projects are the most affected.

F.3. County Economic Dependence

The U.S. Department of Agriculture classifies counties by their economic dependence. I

exploit this county-level heterogeneity to analyze the cross-sectional effects of natural capital

loss on counties. Farming is one of the industries most exposed to extreme weather and water

stress. In addition to the mitigating effect of extreme weather, protected areas are critical

in preserving the natural water cycle and alleviating water stress.35 For these reasons, I

conjecture that counties more economically dependent on farming should be affected most

by natural capital loss. In order to test this hypothesis, I perform two different event studies.

In the first, i.e., column (1) of table XII, I use extreme weather events to define the shocks

and natural capital loss to identify the treated and control groups. Instead, in columns (2)

and (3), I control for weather exposure and utilize the natural capital loss event as shock and

to define the treatment and control groups. 36 The regression specifications are identical to

those presented in the previous sections.

The outcome variables analyzed are the county-level monthly volume-weighted average

municipal bond yields (column (1)), annual personal income (column (2)), and annual popu-

lation change(column (2)).37 The results show that natural capital loss affects bonds issued

by farming counties more than other counties and impacts other important economic out-

comes, such as population migration and personal income. Specifically, farming counties

35McNeely (1994), Dudley and Stolton (2003), Ervin (2011), MacKinnon et al. (2011), Figgis et al. (2015),
Harrison et al. (2016), Dudley et al. (2016), and Zhang et al. (2020) are some studies that portray the
relationship between protected areas and the water cycle.

36For all specifications in this analysis, counties within a 25-miles radius from the county that loses natural
capital are included in the treatment group.

37The sample period for the municipal bond analysis is from 2005 to 2020. Instead, the sample period for
personal income and population change is from 1969 to 2020.
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report higher yield increases of about 17 basis points than the rest of the sample. In ad-

dition, farming counties experience a further decrease of 0.34% in personal income (t stat:

−2.82) and a −0.15% decrease in population (not statistically significant: t stat=−1.38).

Overall, this analysis suggests that the consequences of natural capital loss are perceived in

agricultural counties and can affect the whole country through food production.

G. Additional Robustness Tests

In addition to the cross-sectional evidence, the matching, and the robustness provided in

the previous sections, I present additional robustness tests below.

For this reason, I compute the difference-in-difference estimator proposed by De Chaise-

martin and d’Haultfoeuille (2020) using the Stata package did multiplegt. I collapse the

time-period in pre- and post-extreme weather event and utilize the five months before and

after the event for the estimation. The results reported in Table XII of the appendix are

qualitatively similar to Table VII. These results suggest that heterogeneous treatment effects

do not undermine the paper’s insights.

G.1. Placebo Test

To provide additional robustness to the results, I perform a placebo test using the estima-

tor proposed by De Chaisemartin and d’Haultfoeuille (2020). Specifically, I select counties

that experienced extreme weather events. Next, I consider counties as treated if the county

will experience a natural capital loss event within three years after the extreme weather

event. Lastly, I estimate the effects on all bonds as well as revenue and general obligation

bonds separately. The results of the placebo test are reported in Table XIII. We can see that

the difference between the pre- and post-period is close to zero and statistically insignificant.

These results highlight that ex-ante differences between the treated and control group are

not affecting the results.
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G.2. Municipal Bond Credit Spread

Similar to Goldsmith-Pinkham et al. (2020), I repeat the main analysis of Table VII

using the municipal bond credit spread. Specifically, I use the municipal bonds AAA-rated

curve as a tax-exempt benchmark for the municipal bond credit spread analysis. In these

specifications, the credit spread equals the bond yield minus the maturity-matched par yield

from the AAA-rated curve. The results are reported in the appendix and are qualitatively

similar to the results in the main analysis. Moreover, the economic magnitude is comparable

to the Sea Level Rise Exposure effect reported in Goldsmith-Pinkham et al. (2020).

G.3. Repeated Sales

As proposed by Auh et al. (2021), another possible strategy to estimate the effect of

natural disasters on municipal bonds is to utilize the repeated sales approach to construct

county-level monthly bond returns. This empirical approach has been widely utilized in

other sparsely traded assets such as real estate and corporate bonds (e.g., Case and Shiller

(1987), Goetzmann (1992), Francke (2010), Garzoli et al. (2021), Spiegel and Starks (2016),

and Robertson and Spiegel (2017)). First, I estimate the following repeat sales model to

recover county-level bond returns.

pi,v + CPNi,l:v = pi,l

v∏
t=l+1

(1 + rct )ϵi,t, (6)

where pi,v and pi,l are the prices of bond i issued by county c in month v and l (v > l),

respectively. CPNi,l:v represents the coupon payments from bond i occurred between month

v and l. The county-level bond return at time t is rct . ϵi,t represents the bond-specific

idiosyncratic return. By taking the log of eq. (6), I obtain:

Ri,l:v =
v∑

t=l+1

(Rc
t) ϵi,l:v, (7)
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where Ri,l:v = log((pi,v + CPNi,l:v)/pi,l, R
c
t = log(1 + rct , and ϵi,l:v =

∑v
t=l+1 log(ϵi,t).

The monthly county-level returns Rc
t are estimated by the coefficients on monthly dum-

mies in panel weighted least squares regressions. As in Robertson and Spiegel (2017), the

weights are computed as the ratio between the squared root of bond issue amounts and the

squared root of the time length between l + 1 and v so that larger issues and more recent

trades are assigned larger weights. The returns in year y are estimated using years y − 1,

y, and y + 1 in three-year rolling window regressions.38 The results are reported in Table V

and are consistent with the analysis in Table VIII.

V. Conclusion

This study highlights an essential and valuable characteristic of protected areas. Nature

provides one of the best technologies to fight global warming and mitigate the impact of

natural disasters. Studies in the environmental and conservation literature describe the

mitigation role of natural areas against extreme weather events. This study brings into

economic terms this crucial role that nature covers. In fact, natural capital can decrease

local climate risk and decrease the counties’ cost of debt. First, I show that investors price

the value of natural capital only after the county experiences an extreme weather event. Next,

I connect the mitigation premium to the loss of natural capital and the related increase in

weather damages.

The results show that counties that destroy their natural capital experience a higher cost

of debt after an extreme weather event reflecting the increased local climate risk. Moreover,

the bonds’ use of proceeds provides valuable insights regarding the cross-sectional hetero-

geneity in climate risk exposure. In fact, bonds issued to fund physical infrastructure projects

38As highlighted by Auh et al. (2021) and Spiegel and Starks (2016), it is possible that multicollinearity
arises when bonds do not trade in a county for consecutive weeks. To avoid this issue, I follow Auh et al.
(2021) and merge the dummy variables into a single dummy and evenly split the estimated coefficients when
multicollinearity occurs.
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and revenue bonds are more sensitive to mitigation risk. The effects of natural capital loss

are not only limited to the counties that possess this capital but also to their neighboring

counties. In addition, I present the effects of natural capital loss on population migration

and personal income. I find that areas affected by natural capital loss report higher popu-

lation migration, possibly due to the increased impact of weather events. Lastly, exploiting

the cross-sectional heterogeneity in county economic dependence, I show that natural capital

loss affects farming counties the most due to their exposure to extreme weather and reliance

on water. This latter results highlight the macroeconomic consequences of natural capital

loss as it pertains to food production.

On the other hand, this study might provide only a lower bound of the effect of protected

areas since I am studying a subset of protected areas that have been affected by downsizing,

downgrading, or degazettement. Nevertheless, the use of these natural capital loss events

provides substantial evidence for identifying causality since it provides a shock to the local

natural capital. The finance and economic literature has explored the consequences of natural

disasters on local and national economies. However, this study contributes to the literature

by identifying a mitigation premium in municipal bond markets and economically valuing

the mitigating power of local natural capital against extreme weather events. Moreover, this

paper is the first to introduce the implications of nature conservation in a finance context.

The study provides valuable insights for policymakers in favor of nature conservation and

raises awareness with respect to one of the innumerable qualities of nature.
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Figure 1: This figure represents the exemplification of the quasi-experiment utilized in the
difference-in-difference analysis.

42



Figure 2: This graph reports the frequency of billion-dollar disaster events in the United
States from 1980 to 2020 by type of disaster. The data was collected from the NOAA website.
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Figure 3: This graph reports the CPI-adjusted damages of billion-dollar disaster events in
the United States from 1980 to 2020 by type of disaster. The data was collected from the
NOAA website.
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Figure 4: This figure represents the graphical representation of protected area downgrading,
downsizing, and degazettement (PADDD) (Mascia et al. (2012)).
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Figure 5: This figure represents the protected areas in the contiguous U.S. that experienced a PADDD event from 1976 to
2020.
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Figure 6: This figure represents the U.S. counties that experienced natural capital loss (i.e.
PADDD) from 1976 to 2020.
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Figure 7: This figure represents the coefficients from the difference-in-difference regression
of monthly county-level volume-weighted average municipal bond yields before and after
an extreme weather event (Table VII column (2)). The vertical lines represent 95% confi-
dence bands. The coefficients are estimated using month t − 2 as reference. The controls
include county characteristics (urban-rural classification, population, density, personal in-
come, unemployment rate, ratio of protected area to total county area, proximity to the
coast, elevation, quintile indicators for debt-to-tax-revenue ratio and revenue concentration,
dichotomous indicator for FEMA transfers, and trend variables (t−2 to t−1) for population,
density, personal income, and unemployment rate), municipal bond characteristics averaged
at the county level (coupon rate, rating, years to maturity, years since issuance, size of the
bond issue, and the ratio of trading volume to amount outstanding), and the intensity of the
weather event. The specifications include state-year fixed effects. The standard errors are
clustered at the state level.
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Figure 8: This figure represents coefficients from the semi-parametric regressions of real
estate returns on precipitation exposure. The real estate return is calculated using the Zillow
All Homes Time Series, Smoothed and Seasonally Adjusted for homes in the 35th and 65th

percentile. Each county is sorted into a specific bin using the standardized annual precipita-
tion exposure (equation (1)). The coefficients are estimated relative to counties in the first
bin (lowest precipitation exposure). The controls include urban-rural classification, popula-
tion, density, personal income, unemployment rate, ratio of protected area to total county
area, proximity to the coast, elevation, quintile indicators for debt-to-tax-revenue ratio and
revenue concentration, dichotomous indicator for FEMA transfers, and trend variables (t−2
to t − 1) for population, density, personal income, and unemployment rate. The regression
specification includes state-year fixed effects and the standard errors are clustered at the
state level.
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Table I: Weather Damages by State
This table reports the summary statistics for the annual damages from weather events for each
state in the contiguous United States. This information is collected from the NOAA and the
sample period starts in 1969 and ends in 2020. The annual damages reported are in $ millions and
are CPI-adjusted to 2019 US dollars.

Panel A: Summary Statistics for Damages

Annual Damages N Mean S.D. Min Max

County 153,270 4.97 128.05 0 27,619.17

State 2,450 311.22 2,198.13 0 67,871.12

Panel B: Annual State Damages

State Mean S.D. State Mean S.D.

TX 2,269.14 5,322.83 MI 138.15 300.40

FL 2,205.62 7,277.34 KY 131.47 187.57

LA 1,795.52 9,644.15 WA 125.44 306.52

MS 881.50 4,782.19 SC 115.05 233.38

GA 846.12 2,646.36 NM 97.62 337.56

NJ 646.96 3,981.01 AZ 97.54 464.42

CA 579.86 1,057.78 NV 85.86 361.51

IA 523.81 937.69 OR 85.68 239.65

OK 432.21 729.92 VA 83.84 166.05

NC 427.52 1,134.22 ID 57.56 190.31

AL 413.71 953.22 CT 56.12 175.88

IL 256.46 426.59 MD 39.73 107.10

MO 255.46 572.71 WV 35.13 64.18

OH 254.96 439.10 MT 34.01 143.68

NE 234.15 300.77 SD 29.87 40.38

AR 221.32 421.63 ME 26.67 104.28

CO 201.98 426.29 NH 26.63 142.24

KS 199.62 280.05 UT 26.12 71.42

IN 197.92 725.04 VT 25.11 139.19

PA 196.01 481.14 MA 23.42 58.72

TN 187.49 507.36 WY 8.47 17.50

MN 174.98 377.04 DE 4.66 12.93

ND 172.92 831.84 RI 3.17 14.60

NY 165.50 303.80 DC 1.80 6.93

WI 149.71 237.66
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Table II: PADDD Summary Statistics by Year
This table reports descriptive statistics by year for the PADDD events in the United States, exclud-
ing Alaska and Hawaii. This information is collected from the WWF (Conservation International
and World Wildlife Fund (2019)). The sample period starts in 1969 and ends in 2018.

Year Counties Affected Percent Area Affected (km2) Area Affected (mi2)
1976 1 0.23 1.49 0.58
1978 1 0.23 39.85 15.38
1980 4 0.92 3,204.97 1,237.45
1986 102 23.56 8,445.09 3,260.67
1987 3 0.69 369.53 142.68
1988 5 1.15 1,139.72 440.05
2000 4 0.92 5,229.45 2,019.10
2005 5 1.15 29.36 11.34
2007 4 0.92 1,139.20 439.85
2011 40 9.24 5,683.69 2,194.48
2012 25 5.77 4,454.74 1,719.98
2016 235 54.27 31,858.90 12,300.79
2017 4 0.92 3,388.29 1,308.23
Total 433
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Table III: PADDD by Urban-Rural Classification - 2005-2018 Subsample
This table reports descriptive statistics by urban-rural classification for the PADDD events in the
United States, excluding Alaska and Hawaii. The information about the PADDD is collected from
the WWF (Conservation International and World Wildlife Fund (2019)). The data for the urban-
rural classification are collected from the National Center for Health Statistics (NCHS). The sample
period starts in 2005 and ends in 2018.

Urban-Rural Area Affected Area Affected % of Total Area

Classification Freq. Percent (km2) (mi2) Affected

Large Central Metro 12 3.83 2,842 1,097 6.10%

Fringe Metro 26 8.31 3,589 1,386 7.71%

Medium Metro 54 17.25 6,154 2,376 13.22%

Small Metro 39 12.46 4,564 1,762 9.80%

Micropolitan 68 21.73 8,312 3,209 17.85%

Non-core 114 36.42 21,092 8,144 45.31%

Total 313 100 46,554 17,975
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Table IV: PADDD Events by State - 2005-2018 Subsample
This table reports the number of PADDD events by state, excluding Alaska and Hawaii. This infor-
mation is collected from the WWF (Conservation International and World Wildlife Fund (2019)).
The sample period starts in 2005 and ends in 2018.

State Freq. State Freq.
AR 28 NV 4
CA 27 OK 4
FL 19 OR 4
WA 17 SD 4
NM 15 TN 4
UT 15 WY 4
CO 14 AL 3
VA 13 IN 3
IL 12 ND 3
WI 12 PA 3
AZ 10 SC 3
MI 10 WV 3
MD 7 GA 2
MN 7 IA 2
TX 7 ME 2
ID 6 NE 2
KY 6 OH 2
LA 6 CT 1
MO 6 KS 1
MT 6 MA 1
NY 5 NH 1
MS 4 NJ 1
NC 4
Total 313
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Table V: PADDD Summary Statistics by Cause
This table reports descriptive statistics by cause for the PADDD events in the United States,
excluding Alaska and Hawaii. The information about the PADDD is collected from the WWF
(Conservation International and World Wildlife Fund (2019)). The sample period starts in 2005
and ends in 2018. The definitions of PADDD causes are listed in the appendix.

Cause of PADDD Freq. Percent Area Affected (km2) Area Affected (mi2) % of Total Area Affected

Subsistence 235 75.1% 67,488 26,057 81.7%

Infrastructure 42 13.4% 5,383 2,078 6.5%

Land Claims 20 6.4% 3,679 1,421 4.5%

Oil and Gas 5 1.6% 29 11 0.0%

Mining 4 1.3% 3,803 1,468 4.6%

Other 7 2.2% 2,217 856 2.7%

Total 313 100% 82,599 31,892 100%

54



Table VI: Summary Statistics
This table reports summary statistics of the variables used in the paper for two groups of observa-
tions: counties that experienced a PADDD event and those that did not.

Panel A: Bond Characteristics

PADDD No PADDD

Obs. Mean St.Dev. Obs. Mean St. Dev.

Mun. Bond Yield (%) 21,244 3.04 1.17 714,775 3.02 1.10

Rating 21,244 4.52 1.81 714,775 4.86 1.63

Maturity Years since Issuance 21,244 14.71 7.73 714,775 15.43 7.07

Panel B: County Characteristics

PADDD No PADDD
Obs. Mean St.Dev. Obs. Mean St. Dev.

Weather Damages ($M) 8,650 2.59 37.15 126,321 3.01 64.05
Weather Exp. 8,650 0.11 1.01 126,321 0.36 0.85
Population 8,650 60,521 109,514 126,321 44,985 81,882

Personal Income ($) 8,650 19,561 14,721 126,321 19,138 12,875
Unemployment (%) 8,650 6.12 2.81 126,321 6.98 3.01

Density 8,650 43.19 65.39 126,321 69.79 127.77
Urban-Rural Classification 8,650 5.25 1.00 126,321 5.30 1.04

Protected Area (%) 8,650 18.32 15.62 126,321 3.28 5.85
Population Trend (%) 8,304 1.13 2.47 121,211 0.52 2.03
FEMA Transfers ($M) 8,650 2.65 48.21 126,321 2.88 52.15
Debt/Tax Revenue 8,650 3.68 8.28 126,321 3.72 9.24

Housing Price Index (35th to 75th) 2,767 221,474 166,856 51,791 145,764 113,227
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Table VII. Natural Capital Loss and Bond Yields - Extreme Weather Events
This table reports the difference-in-difference estimation coefficients with monthly county-level
volume-weighted average municipal bond yields as the dependent variable and extreme weather
events as exogenous shock. The sample in column (1) includes all bonds. Instead, columns (2) and
(3) include only revenue and general obligation bonds, respectively. The Treated variable indicates
municipal bonds of counties that experienced a PADDD event no earlier than three years before the
disaster. The controls include county characteristics (urban-rural classification, population, density,
personal income, unemployment rate, ratio of protected area to total county area, proximity to
the coast, elevation, quintile indicators for debt-to-tax-revenue ratio and revenue concentration,
dichotomous indicator for FEMA transfers, and trend variables (t − 2 to t − 1) for population,
density, personal income, and unemployment rate), municipal bond characteristics averaged at the
county level (coupon rate, rating, years to maturity, years since issuance, size of the bond issue, and
the ratio of trading volume to amount outstanding), and the intensity of the weather event. The
specifications include state-year fixed effects. The standard errors are clustered at the state level.
t-statistics are reported in parenthesis. The symbols *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively, based on two-tailed tests.

(1) (2) (3)

Treated × 1(Month -5) −0.016 −0.016 −0.015

(−0.36) (−0.40) (−0.37)

Treated × 1(Month -4) 0.008 −0.010 0.014

(0.21) (−0.25) (0.21)

Treated × 1(Month -3) 0.011 0.052 0.009

(0.32) (0.76) (0.15)

Treated × 1(Month -2) - - -

- - -

Treated × 1(Month -1) 0.016 0.018 0.015

(0.76) (0.31) (0.30)

Treated × 1(Month 0) 0.168*** 0.325*** 0.142**

(3.79) (2.08) (2.01)

Treated × 1(Month 1) 0.221*** 0.481*** 0.191**

(4.26) (4.96) (2.15)

Treated × 1(Month 2) 0.187*** 0.399** 0.185***

(4.25) (2.36) (2.91)

Treated × 1(Month 3) 0.173** 0.251** 0.122*

(2.21) (2.08) (1.88)

Treated × 1(Month 4) 0.109 0.136 0.113

(1.61) (1.69) (1.54)

Treated × 1(Month 5) 0.184** 0.359*** 0.133*

(2.07) (2.62) (1.91)

Controls Y Y Y

State-Year FE Y Y Y

Observations 15,105 8,531 11,148
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Table VIII. Natural Capital Loss and Bond Yields - Extreme Weather Event
Intensity
This table reports the difference-in-difference estimation coefficients with monthly county-level
average volume-weighted municipal bond yields as dependent variable and extreme weather events
as exogenous shock. The sample in column (1) includes all bonds. Instead, columns (2) and
(3) include only revenue and general obligation bonds, respectively. The Treated variable indicates
municipal bonds of counties that experienced a PADDD event within three years before the weather
event. Weather Exp. represents the intensity of the extreme weather event. Post represents the
time period after the extreme weather event. The controls include county characteristics (urban-
rural classification, population, density, personal income, unemployment rate, ratio of protected
area to total county area, proximity to the coast, elevation, quintile indicators for debt-to-tax-
revenue ratio and revenue concentration, dichotomous indicator for FEMA transfers, and trend
variables (t−2 to t−1) for population, density, personal income, and unemployment rate), municipal
bond characteristics averaged at the county level (coupon rate, rating, years to maturity, years since
issuance, size of the bond issue, and the ratio of trading volume to amount outstanding), and the
intensity of the weather event. The specifications include state-year fixed effects. The standard
errors are clustered at the state level. t-statistics are reported in parenthesis. The symbols *,
**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively, based on
two-tailed tests.

(1) (2) (3)

Treated × Post 0.192*** 0.395*** 0.141**

(3.32) (3.11) (2.12)

Treated × Weather Exp. × Post 0.181*** 0.280*** 0.137**

(2.88) (3.17) (1.99)

Controls Y Y Y

State-Year FE Y Y Y

Observations 15105 8531 11148
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Table IX: Natural Capital Loss and Annual Weather Damages
This table reports the difference-in-difference and matching estimation coefficients with annual
damages as dependent variable and PADDD as exogenous shock. The Treated variable indicates if
the county experienced a PADDD event. The controls include urban-rural classification (indicator),
personal income, unemployment rate, population, density, Weather Exp.1−5, Weather Exp.6−10,
quintile indicators for debt-to-tax-revenue ratio and revenue concentration, dichotomous indicator
for FEMA transfers, and trend variables (t−2 to t−1) for population, density, personal income, and
unemployment rate. The specifications include county and state-year fixed effects. The matching
is performed using propensity score and restricting the matches to counties in the same state and
with the same urban-rural classification. The variables utilized for the propensity score match
are the following: county extreme weather exposure in the past five years, density, population,
personal income, unemployment rate, tercile indicators for debt-to-tax-revenue ratio and revenue
concentration, a dichotomous indicator for FEMA transfers, natural capital size (protected area),
and trend in population. t-statistics are reported in parenthesis. The symbols *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively, based on two-tailed
tests.

(1) (2) (3)

Treated × Post 9.71** 9.41** 23.75**

(1.85) (1.83) (2.01)

Weather Exp.1−5 0.41 0.71 -

(0.20) (0.37) -

Weather Exp.6−10 - 2.20 -

- (1.41) -

Controls Y Y -

County FE Y Y -

State-Year FE Y Y -

Observations 124,820 124,820 9,563
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Table X: Natural Capital Loss and Bond Yields - Physical vs Non-physical Use
of Proceeds
This table reports the difference-in-difference estimation coefficients using the bonds’ use of proceeds
and extreme weather as exogenous shock. The dependent variable is the monthly volume-weighted
municipal bond yield. The Treated variable indicates municipal bonds of counties that experienced
a PADDD event within three years before the weather event. Post is an indicator equal to one for
observations occurring after the extreme weather event and zero otherwise. Physical indicates bonds
with the use of proceeds classified as physical (see appendix for more details). The controls include
county characteristics (urban-rural classification, population, density, personal income, unemploy-
ment rate, quintile indicators for debt-to-tax-revenue ratio and revenue concentration, dichotomous
indicator for FEMA transfers, and trend variables (t− 2 to t− 1) for population, density, personal
income, and unemployment rate), municipal bond characteristics (coupon rate, rating, years to
maturity, years since issuance, size of the bond issue, and the ratio of trading volume to amount
outstanding), and the intensity of the weather event. The specifications include county and state-
year fixed effects. Column (1) reports the regression estimates and columns (2) and (3) report the
matching estimates. For column (2), the matches are restricted to bonds issued in the same state
with the same rating, type (general obligation or revenue), and county FEMA transfers indicator
(i.e., below or above median FEMA transfers). I also allow a maximum of two year difference in
maturity and a maximum of six months difference in the extreme weather event date. The vari-
ables used for the propensity score include Weather Exp.1−5, population, density, natural capital
size (protected area), personal income, unemployment rate, debt-to-tax-revenue ratio, revenue con-
centration, trend in population, coupon rate. For column (3), I match bonds issued by the same
county in the same year. The standard errors are clustered at the state level for column (1) and
at the bond level for columns (2) and (3). t-statistics are reported in parenthesis. The symbols *,
**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively, based on
two-tailed tests.

(1) (2) (3)
Treated × Post 0.145** 0.217*** 0.220***

(2.32) (3.18) (3.51)
Treated × Post × Physical 0.140*** 0.182*** 0.241***

(3.15) (3.67) (2.98)
Treated Bonds 4,852 651 143
Control Bonds 38,450 1,218 266
Physical Bonds 18,187 785 200

Non-Physical Bonds 25,115 1,084 209
County Controls Y Y N
Bond Controls Y Y Y
Fixed Effects Y - -

Same County, same Year N N Y
Observations 82,101 3,906 858
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Table XI: Natural Capital Loss and Bond Yields - Neighboring Counties
This table reports the coefficients of the regression (column (1)) and the matching estimation
(columns (1) and (2)). The dependent variable is the monthly county-level average volume-weighted
municipal bond yield. The Treated variable indicates municipal bonds of counties that are within
a 25-miles radius from a county that experienced a PADDD event within three years before the
disaster. Post is an indicator equal to one for observations occurring after the extreme weather
event and zero otherwise. The controls utilized for the regression estimation in column (1) include
county characteristics (urban-rural classification, population, density, personal income, unemploy-
ment rate, quintile indicators for debt-to-tax-revenue ratio and revenue concentration, dichotomous
indicator for FEMA transfers, and trend variables (t− 2 to t− 1) for population, density, personal
income, and unemployment rate), municipal bond characteristics (coupon rate, rating, years to
maturity, years since issuance, size of the bond issue, and the ratio of trading volume to amount
outstanding), and the intensity of the weather event. The specification in column (1) includes
county and state-year fixed effects. For columns (2), the matches are restricted to bonds issued
in the same state with the same rating, type (general obligation or revenue), and county FEMA
transfers indicator (i.e., below or above median FEMA transfers). I also allow a maximum of two
years difference in maturity and a maximum of six months difference in the event date. The vari-
ables used for the propensity score include Weather Exp.1−5, population, density, natural capital
size (protected area), personal income, unemployment rate, debt-to-tax-revenue ratio, revenue con-
centration, trend in population, coupon rate. For column (3), I match bonds issued by the same
county in the same year. The standard errors are clustered at the state level for column (1) and
at the bond level for columns (2) and (3). t-statistics are reported in parenthesis. The symbols *,
**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively, based on
two-tailed tests.

(1) (2) (3)

Treated × Post 0.185** 0.148*** 0.166***

(2.01) (3.41) (3.55)

Treated × Post × Physical 0.175*** 0.325*** 0.373***

(3.18) (4.16) (4.71)

Treated Bonds 8,491 823 178

Control Bonds 34,632 1,563 341

Physical Bonds 18,974 1,098 223

Non-Physical Bonds 24,149 1,288 296

County Controls Y Y N

Bond Controls Y Y Y

Same County, Same year N N Y

Fixed Effects Y - -

Observations 95,523 4,938 1,068
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Table XII: Estimation of Natural Capital Loss Effect on Farming Counties
This table reports the difference-in-difference estimation coefficients with monthly county-level
average volume-weighted municipal bond yields, personal income, and population as dependent
variables. The analysis in column (1) uses extreme weather events as exogenous shock. Instead, the
rest of the analysis is performed using PADDD as exogenous shock. For column (1), the Treated
variable indicates counties that experienced a PADDD event (or are within a 25-miles radius)
within three years before the extreme weather event. For columns (2) and (3), the Treated variable
indicates counties that experienced a PADDD event or are within a 25-miles radius. The farming
indicator equals one if the county is classified as economically dependent on farming by the BEA.
For column (1) ((2) and (3)), the Post is an indicator equal to one for observations occurring after
the extreme weather event (natural capital loss event) and zero otherwise. The controls utilized for
the regression estimation in column (1) include county characteristics (urban-rural classification,
population, density, personal income, unemployment rate, ratio of protected area to total county
area, proximity to the coast, elevation, quintile indicators for debt-to-tax-revenue ratio and revenue
concentration, dichotomous indicator for FEMA transfers, and trend variables (t − 2 to t − 1) for
population, density, personal income, and unemployment rate), municipal bond characteristics
averaged at the county level (coupon rate, rating, years to maturity, years since issuance, size of
the bond issue, and the ratio of trading volume to amount outstanding), and the intensity of the
weather event. Columns (2) and (3) do not include bond controls. The specifications in column
(1) include state-year fixed effects. The specifications in columns (2) and (3) include county and
state-year fixed effects. The standard errors are clustered at the state level. t-statistics are reported
in parenthesis. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively, based on two-tailed tests.

(1) (2) (3)

Treated × Post 0.152*** −0.058 −0.13*

(3.53) (−0.82) (−1.91)

Treated × Post × Farming 0.171*** −0.338** −0.15

(4.13) (−2.82) (−1.56)

County Controls Y Y Y

Bond Controls Y - -

Fixed Effects Y Y Y

Observations 17,221 170,293 170,293
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Table XIII. Natural Capital Loss and Bond Yields - Placebo Test
This table reports the difference-in-difference estimation coefficients with monthly county-level
average volume-weighted municipal bond yields as dependent variable and extreme weather events
as exogenous shock. The sample in column (1) includes all bonds. Instead, columns (2) and
(3) include only revenue and general obligation bonds, respectively. The Treated variable indicates
municipal bonds of counties that experienced a PADDD event no earlier than three years before the
disaster. Weather Exp. represents the intensity of the extreme weather event. Post represents the
time period after the extreme weather event. The controls include county characteristics (urban-
rural classification, population, density, personal income, unemployment rate, ratio of protected
area to total county area, proximity to the coast, elevation, quintile indicators for debt-to-tax-
revenue ratio and revenue concentration, dichotomous indicator for FEMA transfers, and trend
variables (t−2 to t−1) for population, density, personal income, and unemployment rate), municipal
bond characteristics averaged at the county level (coupon rate, rating, years to maturity, years since
issuance, size of the bond issue, and the ratio of trading volume to amount outstanding), and the
intensity of the weather event. The specifications include state-year fixed effects. The standard
errors are clustered at the state level. t-statistics are reported in parenthesis. The symbols *,
**, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively, based on
two-tailed tests.

(1) (2) (3)

Treated × Post 0.008 0.036 0.013

(0.46) (0.31) (0.18)

Controls Y Y Y

State-Year FE Y Y Y

Observations 15,105 8,531 11,148
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Table XIV. Natural Capital Loss and Bond Yields - Repeated Sales
This table reports the difference-in-difference estimation coefficients with monthly county-level mu-
nicipal bond returns computed using the repeated sales method as dependent variable and extreme
weather events as exogenous shock. The sample in column (1) includes all bonds. Instead, columns
(2) and (3) include only revenue and general obligation bonds, respectively. The Treated variable
indicates municipal bonds of counties that experienced a PADDD event no earlier than three years
before the disaster. Weather Exp. represents the intensity of the extreme weather event. Post
represents the time period after the extreme weather event. The controls include county character-
istics (urban-rural classification, population, density, personal income, unemployment rate, ratio
of protected area to total county area, proximity to the coast, elevation, quintile indicators for
debt-to-tax-revenue ratio and revenue concentration, dichotomous indicator for FEMA transfers,
and trend variables (t − 2 to t − 1) for population, density, personal income, and unemployment
rate), municipal bond characteristics averaged at the county level (coupon rate, rating, years to
maturity, years since issuance, size of the bond issue, and the ratio of trading volume to amount
outstanding), and the intensity of the weather event. The specifications include state-year fixed
effects. The standard errors are clustered at the state level. t-statistics are reported in parenthe-
sis. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively, based on two-tailed tests.

(1) (2) (3)

Treated × Post 0.215*** 0.381*** 0.167**

(3.51) (3.47) (2.17)

Treated × Weather Exp. × Post 0.174*** 0.261*** 0.148**

(2.91) (3.31) (2.03)

Controls Y Y Y

State-Year FE Y Y Y

Observations 15,817 8,913 11,842
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